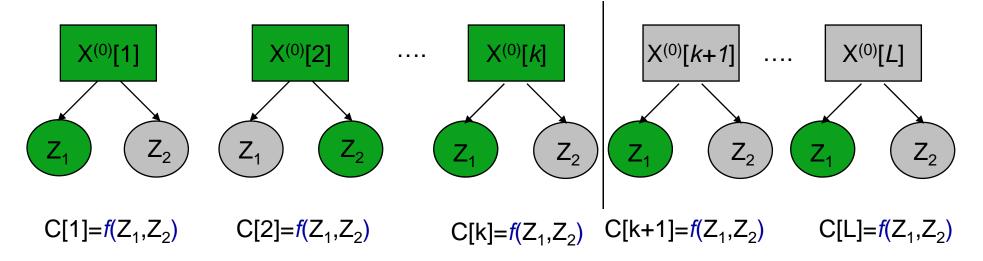
## Identification of Promising Subgroups in the Retrospective Analysis of Clinical Trials

Ilya Lipkovich, Alex Dmitrienko, Eric Su, Jonathan Denne, Gregory Enas

Eli Lilly and Company



#### **Basic Idea**

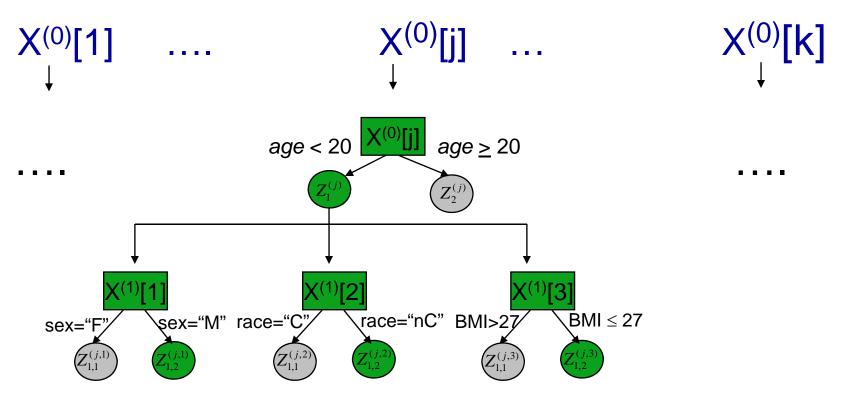

- Retrospective Data are formed:
  - Outcome (Y), treatment (T) (Drug vs. Placebo) and various subject characteristics
  - Potentially, multiple studies can be pooled
  - We assume overall treatment effect is not significant or very small ("failed studies")
- Goal: Find subgroup (s) where treatment effect is large
- Divide full data into 3 subsets of equal size, balanced with respect to treatment groups and patient characteristics
- Apply search algorithm to the exploratory data set and find best subgroup defined by subject characteristics
- Validate findings using 2 confirmatory datasets, ensuring that the overall type I error rate of the entire procedure is <(0.05)<sup>2</sup>=0.0025

## Pocock & Simon Allocation Procedure

- Allocate a proportion of subjects (f%) randomly into 3 subgroups
- Add subjects one by one and for each new subject:
  - Consider covariate X (with level X\* for that subject)
    - compute the imbalance scores  $IS_1(X^*)$ ,  $IS_2(X^*)$ ,  $IS_3(X^*)$ , if that subject is allocated to sets 1, 2, or 3, respectively.
  - Compute total scores over all covariates:  $IS_1 = \Sigma_x IS_1(X^*)$ ,  $IS_2 = \Sigma_x IS_2(X^*)$ ,  $IS_3 = \Sigma_x IS_3(X^*)$
  - Allocate subject to the subgroup with smallest total imbalance score among {IS<sub>1</sub>,IS<sub>2</sub>,IS<sub>3</sub>}
- The procedure guarantees with high probability that imbalance of the resulting sets with respect to the covariates will be minimal

# Selecting Promising Covariates. A Tree Based Approach

- Assume there are L covariates x<sub>i</sub> with m<sub>i</sub> levels (i=1,..,L)
- for each candidate covariate identify the best binary split in terms of criterion C and identify k best covariates with promising splits such that C[*I*] > c<sub>cutoff</sub>




 $Z_1$  and  $Z_2$  are standardized treatment effects in subgroups, f() is discussed later

$$z_j = (\overline{y}_{j,T} - \overline{y}_{j,C}) / (\overline{\sigma}_j \sqrt{1/n_{j,T} + 1/n_{j,C}}), \ j = 1,2$$

#### **Growing Multiple Trees**

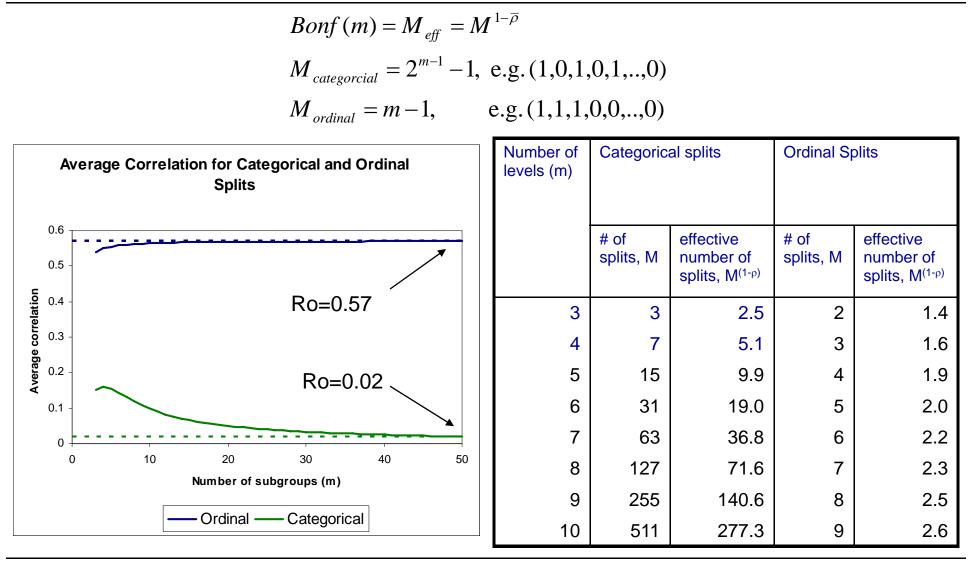
• Each of *k* selected covariates serves as a root of a tree constructed by recursively splitting the data using remaining covariates from the original set (excluding covariates already used in the current tree)



# Comparing With Classical Regression Tree Methodology

- C&RT approaches look for subgroups with high level of outcome (Y)
- We are looking for subgroups with large TE
- C&RT can miss a subgroup with TE when trivial predictors that are common for treated and untreated subjects dominate the outcome

$$Y_{i} = f_{1}(X_{1i}) + f_{2}(X_{2i}) + TE(X_{i}) + \varepsilon_{i}, \varepsilon_{i} \sim N(0, \sigma^{2})$$
$$TE(X_{i}) = \{b_{1}I(X_{1i} = X_{1}^{*}) + b_{2}(I(X_{2i} = X_{2}^{*}) - b\}I(T_{i} = 1)$$

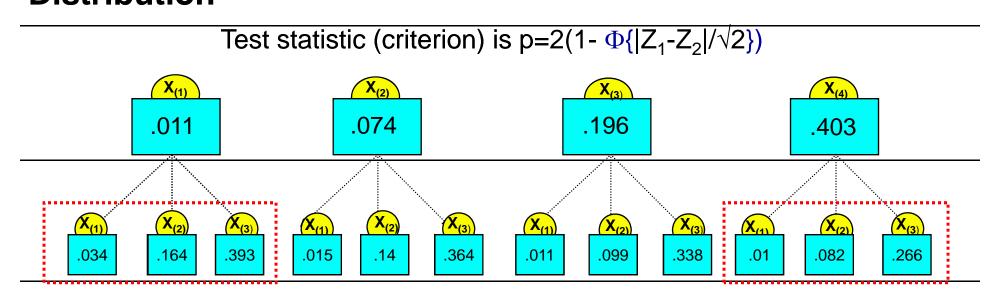

## **Trees: How Many and How Large?**

- Specifying cut-offs of splitting criterion at each level
  - Splitting criterion statistic at each level = adjusted p-value for *treatment-by-split interaction*:

 $-C = f(Z_1, Z_2) = 2(1 - \Phi\{|Z_1 - Z_2|/\sqrt{2}\})^* \{\text{#of possible splits}\},\$ 

- Nominal alphas at levels 1,2,3 (say  $\alpha_0 = .1, \alpha_0 = .05, \alpha_0 = .01$ )
- Then level-specific cut-offs for criterion *C* are based on null distribution of criterion statistic
- Imposing constraints on:
  - upper limit on number of variables that serve as new roots (e.g. =5)
  - upper limit of nesting (e.g. =3)
  - lower limit on size of a subgroup (e.g. N=30)
  - upper limit on total number of comparisons

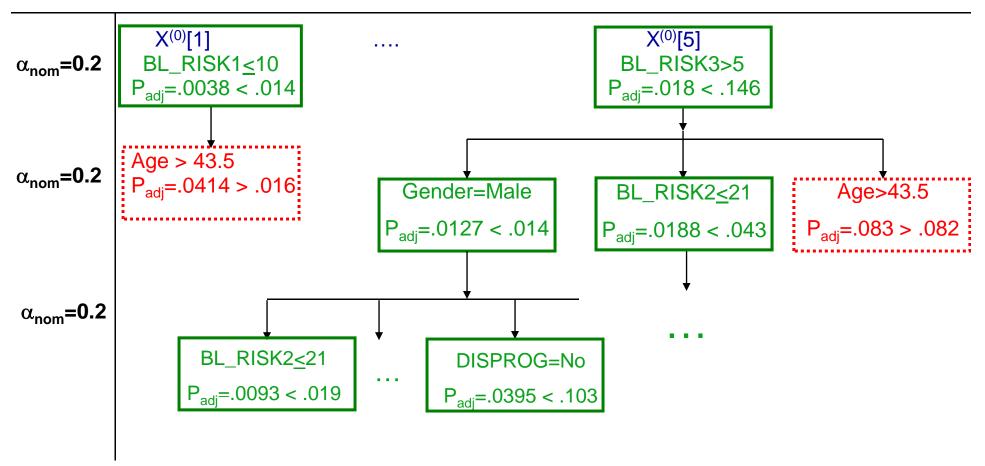
#### Adjusting for Multiple Comparisons per Covariate




# Obtaining the Null Distribution for Splitting Criteria

- Data sets under H<sub>0</sub> are constructed by standardizing within treatment groups and permuting treatment labels
  - This is consistent with randomization: it only breaks relationship between y and treatment while preserving relationship between y and covariates
    - Note that any relationship between treatment and covariates should be irrelevant due to randomization
- Compute adjusted criterion  $C^*$  for every possible configuration (defined by order  $j_0, j_1, ..., j_{lev}$  of covariates selected at current and previous levels)
- Repeat many (1,000) times and compute cut-offs at each level for any desired nominal alpha

$$\frac{\#(C^*(j_0,...,j_{curlevel}) < cutoff)}{N_{perm}} = \alpha(culevel)$$


# Splitting criterion Cut-offs from Permutation Null Distribution



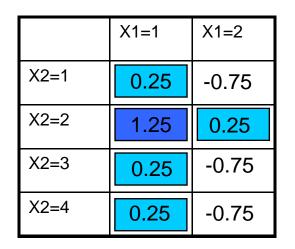
- Nominal  $\alpha$  = 0.05 was used at all 3 levels, all variables have 2 categories
- $X_{(1)}$ ,  $X_{(2)}$ , etc refer to variables ordered by the criterion, from best to worst;
- the same variable cannot appear more than once along the same path
- The cut-offs are conditional on the current level and order of covariate selected at higher level(s)

#### **Illustrating Recursive Partitioning Procedure With Clinical**

#### **Trial Data**



Drug A vs. Placebo. P values based on a Chi-square test for categorical outcome Number of max sub trees at every level is limited to 5


## **Top Subgroups Identified**

| Subgroups found in exploratory set                                                    | Exploratory set |            |         | Test set |
|---------------------------------------------------------------------------------------|-----------------|------------|---------|----------|
|                                                                                       |                 | asymptotic | P value | P value  |
|                                                                                       | group)          | Z score    |         |          |
| BL_RISK2 < 21 and BL_RISK3 > 5 and GENDER=(Male)                                      | 43              | 3.30       | .00049  | .03898   |
| AGE > 43.51 and BL_RISK2 $\leq$ 21 and BL_RISK4 $\leq$ 3                              | 183             | 3.29       | .00049  | .26106   |
| <b>BL_RISK5</b> $\leq$ 25 and <b>BL_RISK3</b> > 5 and <b>GENDER</b> =(Male)           | 45              | 3.28       | .00052  | .01204   |
| <b>BL_RISK2</b> $\leq$ 21 and <b>BL_RISK4</b> $\leq$ 3 and <b>ORIGIN</b> =(Caucasian) | 169             | 3.16       | .00080  | .34738   |
|                                                                                       |                 |            |         |          |

Drug A vs. Placebo. P values based on a Chi-square test for categorical outcome Data divided into exploratory and a single test set

#### Simulating Data With Treatment Effect Within Subgroups

True subgroup: X1={1}, X2={2}



- TE is the sum of effects from each "contributing" variable:
- Overall TE is zero

$$Y_{i} = TE(X_{i}) + \varepsilon_{i}, \varepsilon_{i} \sim N(0, \sigma^{2})$$
$$TE(X_{i}) = a \sum_{j=1}^{m_{e}} \left\{ I(X_{ij} = X_{j}^{*})(1 - \frac{n_{j}}{N}) - I(X_{ij} \neq X_{j}^{*}) \frac{n_{j}}{N} \right\} I(T_{i} = 1)$$

# Quantifying "Success" for Simulation Study. Proportion of TE Recovered

$$\% TE(captured / true) = 100\% \frac{|S_{found}|^{-1} \sum_{i \in S_{found}} TE_i}{|S_{true}|^{-1} \sum_{i \in S_{true}} TE_i}$$

S<sub>found</sub> the set of all *treated* subjects identified as the best subgroup by the algorithm and confirmed by 2 validation sets

S<sub>true</sub> the set of *treated* subjects in the "true best subgroup"

Copyright © 2008 Eli Lilly and Company;

#### Correct group: "X1=0", n=150, corr(X)=0

| Total # of covariates | Assumed<br>treatment<br>effect in<br>correct<br>subgroup | Multiple $\delta$<br>for TE with<br>80% power<br>on full data s |     | ΤΕ,% <b>(1-</b> β <b>)</b> <sup>3</sup> | Proportion<br>of effective<br>runs,% | Proportion of<br>confirmed<br>runs,% | TE<br>Recovered/<br>TE in correct<br>subgroup, % | Size of<br>confirmed<br>subgroup |
|-----------------------|----------------------------------------------------------|-----------------------------------------------------------------|-----|-----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------------|----------------------------------|
| 5                     | 0                                                        | 0                                                               | 2.5 | 0.002                                   | 3.5                                  | 0.00                                 |                                                  |                                  |
|                       | 0.364                                                    | -                                                               | 60  |                                         |                                      |                                      | 100                                              | 145.39                           |
|                       | 0.460                                                    | 2.46                                                            | 80  | 51.2                                    | 91.44                                | 51.58                                | 100                                              | 143.84                           |
| 10                    | 0                                                        | 0                                                               | 2.5 | 0.002                                   | 5.0                                  | 0.02                                 |                                                  |                                  |
|                       | 0.364                                                    | 1.95                                                            | 60  | 21.6                                    | 65.40                                | 20.14                                | 100                                              | 144.20                           |
|                       | 0.460                                                    | 2.46                                                            | 80  | 51.2                                    | 87.02                                | 46.44                                | 100                                              | 144.02                           |
| 20                    | 0                                                        | 0                                                               | 2.5 | 0.002                                   | 4.68                                 | 0.00                                 |                                                  |                                  |
|                       | 0.364                                                    | 1.95                                                            | 60  | 21.6                                    | 54.64                                | 15.18                                | 100                                              | 145.59                           |
|                       | 0.460                                                    | 2.46                                                            | 80  | 51.2                                    | 82.34                                | 42.94                                | 100                                              | 144.52                           |
|                       |                                                          |                                                                 |     | ×_                                      |                                      |                                      |                                                  |                                  |

Assumed TE in full data = 0

Assumed TE for correct subgroup =  $\delta \mathbf{x}$  (TE that would give 80% power in full data) N (full data) =900, number of simulated data sets =5,000

#### Correct group: "X1=0,X2=0,X3=0",n=150, corr(X)=0

| Total # of | Assumed                                       | Multiple $\delta$                          | Power for                                           | Power for                                    | •                      | Proportion of       | TE<br>De serve re d/                       | Size of               |
|------------|-----------------------------------------------|--------------------------------------------|-----------------------------------------------------|----------------------------------------------|------------------------|---------------------|--------------------------------------------|-----------------------|
| covariates | treatment<br>effect in<br>correct<br>subgroup | for TE with<br>80% power<br>on full data s | TE in the<br>correct<br>subgroup,%<br><b>(1-</b> β) | confirmed<br>TE,% <b>(1-</b> β) <sup>3</sup> | of effective<br>runs,% | confirmed<br>runs,% | Recovered/<br>TE in correct<br>subgroup, % | confirmed<br>subgroup |
|            |                                               |                                            |                                                     |                                              |                        |                     |                                            |                       |
| 5          | 0                                             | 0                                          | 2.5                                                 | 0.002                                        | 3.5                    | 0.00                |                                            |                       |
|            | 0.364                                         | 1.95                                       | 60                                                  | 21.6                                         | 50.66                  | 9.94                | 92.39                                      | 156.38                |
|            | 0.460                                         | 2.46                                       | 80                                                  | 51.2                                         | 76.44                  | 33.76               | 94.83                                      | 153.64                |
| 10         | 0                                             | 0                                          | 2.5                                                 | 0.002                                        | 5.0                    | 0.02                |                                            |                       |
|            | 0.364                                         | 1.95                                       | 60                                                  | 21.6                                         | 43.12                  | 5.76                | 86.94                                      | 157.58                |
|            | 0.460                                         | 2.46                                       | 80                                                  | 51.2                                         | 61.24                  | 20.94               | 90.88                                      | 156.35                |
| 20         | 0                                             | 0                                          | 2.5                                                 | 0.002                                        | 4.7                    | 0.00                |                                            |                       |
|            | 0.364                                         | 1.95                                       | 60                                                  | 21.6                                         | 25.90                  | 2.08                | 79.46                                      | 164.56                |
|            | 0.460                                         | 2.46                                       | 80                                                  | 51.2                                         | 45.34                  | 11.60               | 87.38                                      | 157.09                |
|            |                                               |                                            |                                                     | r.                                           |                        |                     |                                            |                       |

Assumed TE in full data = 0

Assumed TE for correct subgroup =  $\delta \mathbf{x}$  (TE that would give 80% power in full data) Full data =900, number of simulated data sets =5,000

#### Correct group: "X1=0", n=150, corr(X)=0.3

| Total # of covariates | Assumed treatment | Multiple $\delta$ for TE with | Power for TE in the | Power for confirmed                     | Proportion of effective | Proportion of confirmed | TE<br>Recovered/          | Size of confirmed |
|-----------------------|-------------------|-------------------------------|---------------------|-----------------------------------------|-------------------------|-------------------------|---------------------------|-------------------|
| covariates            |                   | 80% power<br>on full data s   | correct             | TE,% <b>(1-</b> β <b>)</b> <sup>3</sup> | runs,%                  | runs,%                  | TE in correct subgroup, % | subgroup          |
| 5                     | 0                 | 0                             | 2.5                 | 0.002                                   | 4.96                    | 0.00                    |                           |                   |
|                       | 0.364             | 1.95                          | 62                  | 23.8                                    | 75.96                   | 24.82                   | 100                       | 142.70            |
|                       | 0.460             | 2.46                          | 82                  | 55.1                                    | 92.38                   | 52.28                   | 100                       | 139.00            |
| 10                    | 0                 | 0                             | 2.5                 | 0.002                                   | 4.62                    | 0.00                    |                           |                   |
|                       | 0.364             | 1.95                          | 62                  | 21.6                                    | 69.96                   | 21.30                   | 99.93                     | 140.23            |
|                       | 0.460             | 2.46                          | 82                  | 51.2                                    | 88.98                   | 46.18                   | 99.99                     | 138.33            |
| 20                    | 0                 | 0                             | 2.5                 | 0.002                                   | 4.80                    | 0.00                    |                           |                   |
|                       | 0.364             | 1.95                          | 62                  | 23.8                                    | 59.12                   | 17.12                   | 99.88                     | 140.7             |
|                       | 0.460             | 2.46                          | 82                  | 55.1                                    | 85.68                   | 42.78                   | 99.95                     | 136.5             |
|                       |                   |                               |                     | A.                                      |                         |                         |                           |                   |

Assumed TE in full data = 0

Assumed TE for correct subgroup =  $\delta \mathbf{x}$  (TE that would give 80% power in full data) Full data =900, number of simulated data sets =5,000

#### Correct group: "X1=0,X2=0,X3=0", n ≈ 168,corr(X)=0.3

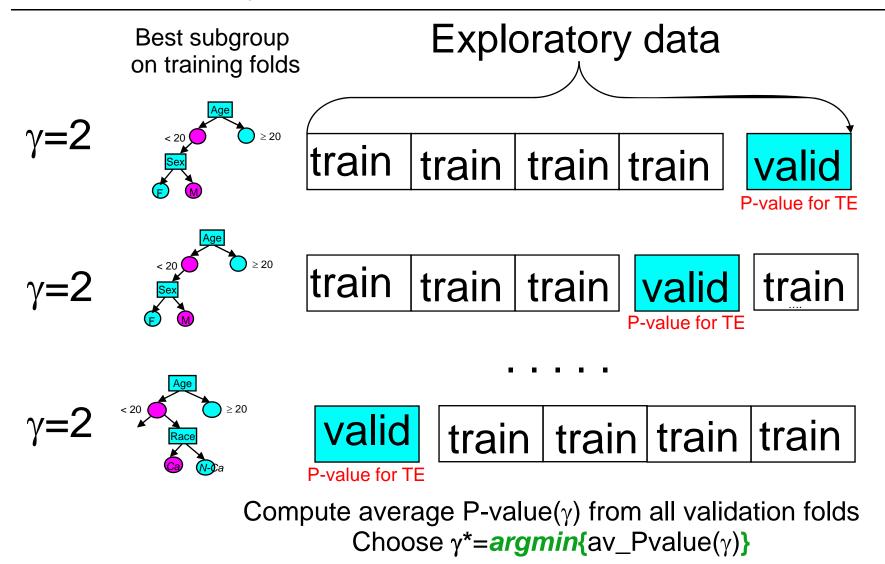
| Total # of | Assumed                                       | Multiple $\delta$                          | Power for                                   | Power for                                             |                        | Proportion of       | TE<br>Decevered/                           | Size of               |
|------------|-----------------------------------------------|--------------------------------------------|---------------------------------------------|-------------------------------------------------------|------------------------|---------------------|--------------------------------------------|-----------------------|
| covariates | treatment<br>effect in<br>correct<br>subgroup | for TE with<br>80% power<br>on full data s | TE in the<br>correct<br>subgroup,%<br>(1-β) | confirmed<br>TE,% ( <b>1-</b> β <b>)</b> <sup>3</sup> | of effective<br>runs,% | confirmed<br>runs,% | Recovered/<br>TE in correct<br>subgroup, % | confirmed<br>subgroup |
| 5          | 0                                             | 0                                          | 2.5                                         | 0.002                                                 | 4.96                   | 0.00                |                                            |                       |
|            | 0.364                                         | 1.95                                       | 62                                          | 23.8                                                  | 87.86                  | 26.64               | 90.00                                      | 173.53                |
|            | 0.460                                         | 2.46                                       | 82                                          | 55.1                                                  | 97.30                  | 58.70               | 92.29                                      | 171.29                |
| 10         | 0                                             | 0                                          | 2.5                                         | 0.002                                                 | 4.62                   | 0.00                |                                            |                       |
|            | 0.364                                         | 1.95                                       | 62                                          | 21.6                                                  | 78.34                  | 16.84               | 84.13                                      | 173.59                |
|            | 0.460                                         | 2.46                                       | 82                                          | 51.2                                                  | 93.42                  | 46.34               | 87.52                                      | 169.90                |
| 20         | 0                                             | 0                                          | 2.5                                         | 0.002                                                 | 4.80                   | 0.00                |                                            |                       |
|            | 0.364                                         | 1.95                                       | 62                                          | 23.8                                                  | 70.44                  | 11.80               | 79.32                                      | 173.01                |
|            | 0.460                                         | 2.46                                       | 82                                          | 55.1                                                  | 92.32                  | 36.58               | 82.60                                      | 170.08                |
|            |                                               |                                            |                                             | A.                                                    |                        |                     |                                            |                       |

Assumed TE in full data = 0

Assumed TE for correct subgroup =  $\delta \mathbf{x}$  (TE that would give 80% power in full data) Full data =900, number of simulated data sets =5,000

# Simulation Results. Distribution of Confirmed Runs

#### Correct group: "X1=0, X2=0", n ≈ 161,corr(X)=0.3


| Total # of | Assumed   | Proportion   | Size of   | %        | %                                      | % overshoot                 | %       | %        |
|------------|-----------|--------------|-----------|----------|----------------------------------------|-----------------------------|---------|----------|
| covariates | treatment | of confirmed | confirmed | complete | undershoot                             | choosing                    | overlap | complete |
|            | effect in | runs,%       | subgroup  | match    |                                        | $x_1 = 0 \& x_2 = 0 \& x_3$ |         | miss     |
|            | correct   |              |           |          | x <sub>1</sub> =0 or x <sub>2</sub> =0 | ={0 or 1}                   |         |          |
|            | subgroup  |              |           |          |                                        |                             |         |          |
| 5          | 0.364     | 21.7         | 155.6     | 48.21    | 12.05                                  | 34.77                       | 4.97    | 0.00     |
|            | 0.460     | 55.5         | 149.1     | 49.42    | 4.66                                   | 41.79                       | 4.13    | 0.00     |
| 10         | 0.364     | 14.8         | 154.1     | 28.34    | 17.68                                  | 40.35                       | 13.50   | 0.93     |
|            | 0.460     | 45.0         | 144.2     | 29.35    | 6.26                                   | 53.42                       | 10.79   | 0.22     |
| 20         | 0.364     | 10.8         | 151.8     | 20.37    | 18.15                                  | 41.85                       | 18.70   | 0.93     |
|            | 0.460     | 36.1         | 147.0     | 23.88    | 11.19                                  | 47.81                       | 16.90   | 0.22     |

## **Next Steps**

- The performance of the algorithm can be improved by calibrating various tuning parameters
  - Nominal alphas at each level,  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$
  - Number of covariates (levels)  $\boldsymbol{\gamma}$  in defining the best subgroup
- Tuning parameter can be calibrated via bootstrap or cross-validation
- The solution (optimal subgroup) given change in tuning parameters should be obtained fast (without re-computing permutation distribution for the criterion)

#### **Illustration of k-fold Cross-validation For**

#### Choosing $\gamma$ =Number of levels



# Discussion

- A novel tree-based procedure is proposed as a "salvaging strategy" for failed studies. This approach can also can be used as an exploratory tool for hypothesis generation
- The rate of treatment effect recovered in confirmed subgroup is  ${\approx}90\%$  of the maximal TE
- When the number of potential covariates is small (≤ 5) the rates of confirmed sub-groups are comparable with the rates of success using 2 confirmation data sets, if the true subgroup were known (an ideal benchmark)
- With larger number of candidate covariates (≥ 10) the rates of confirmed runs may drop substantially compared with the "ideal benchmark"
- The effect of correlation in covariates appears to
  - improve the rate of "confirmed subsets", however
  - at the expense of poorer match with the true subsets (confirmed subsets may partially overlap the true subset)